

























GP | W | L | OT | Pts |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
Player | # | POS | CON | CK | FG | DI | SK | ST | EN | DU | PH | FO | PA | SC | DF | PS | EX | LD | PO | MO | OV | AGE | CONTRACT | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 46 | RW | 100.00 | 31 | 45 | 85 | 74 | 90 | 74 | 51 | 85 | 91 | 85 | 90 | 69 | 60 | 90 | 30 | 58 | 50 | 76 | 23 | 1,900,999$/3yrs | |||
![]() | 0 | C | 100.00 | 39 | 54 | 91 | 62 | 99 | 61 | 69 | 68 | 99 | 97 | 44 | 76 | 92 | 59 | 69 | 28 | 50 | 74 | 30 | 1,100,000$/2yrs | |||
![]() | 97 | LW | 100.00 | 81 | 46 | 88 | 83 | 50 | 98 | 62 | 67 | 50 | 94 | 80 | 45 | 87 | 85 | 48 | 56 | 50 | 74 | 24 | 1,500,000$/1yrs | |||
![]() | 7 | LW | 100.00 | 53 | 41 | 99 | 73 | 57 | 75 | 78 | 62 | 62 | 95 | 67 | 67 | 76 | 54 | 89 | 8 | 50 | 73 | 33 | 700,000$/1yrs | |||
![]() | 65 | LW | 100.00 | 63 | 40 | 88 | 72 | 83 | 88 | 55 | 69 | 56 | 61 | 69 | 97 | 35 | 98 | 92 | 56 | 50 | 73 | 25 | 1,000,000$/2yrs | |||
![]() | 26 | LW | 100.00 | 78 | 52 | 76 | 58 | 84 | 60 | 55 | 82 | 62 | 87 | 85 | 65 | 63 | 57 | 88 | 58 | 50 | 73 | 23 | 1,999,999$/3yrs | |||
![]() | 17 | C | 100.00 | 59 | 49 | 90 | 72 | 77 | 99 | 94 | 67 | 64 | 72 | 61 | 37 | 33 | 77 | 87 | 42 | 50 | 72 | 26 | 1,200,000$/2yrs | |||
![]() | 31 | C | 100.00 | 54 | 34 | 98 | 85 | 94 | 63 | 59 | 87 | 96 | 74 | 44 | 56 | 75 | 92 | 44 | 38 | 50 | 72 | 26 | 1,600,000$/2yrs | |||
![]() | 0 | C | 100.00 | 99 | 64 | 94 | 58 | 62 | 93 | 76 | 89 | 93 | 82 | 37 | 43 | 48 | 94 | 79 | 1 | 50 | 72 | 36 | 835,000$/2yrs | |||
![]() | 69 | LW | 100.00 | 89 | 51 | 71 | 57 | 82 | 70 | 50 | 61 | 75 | 45 | 98 | 99 | 35 | 99 | 78 | 40 | 50 | 70 | 29 | 1,330,000$/1yrs | |||
![]() | 0 | D | 100.00 | 99 | 46 | 89 | 95 | 37 | 99 | 54 | 66 | 25 | 56 | 49 | 99 | 36 | 60 | 42 | 67 | 50 | 73 | 22 | 800,000$/1yrs | |||
![]() | 35 | D | 100.00 | 90 | 58 | 73 | 65 | 58 | 79 | 64 | 71 | 25 | 73 | 57 | 70 | 71 | 46 | 52 | 63 | 50 | 69 | 23 | 1,900,000$/3yrs | |||
![]() | 85 | D | 100.00 | 54 | 28 | 94 | 89 | 70 | 89 | 57 | 78 | 25 | 44 | 57 | 85 | 57 | 75 | 37 | 75 | 50 | 69 | 21 | 800,000$/1yrs | |||
![]() | 43 | D | 100.00 | 87 | 35 | 58 | 71 | 38 | 94 | 53 | 67 | 25 | 79 | 46 | 75 | 39 | 52 | 61 | 56 | 50 | 66 | 24 | 700,000$/1yrs | |||
![]() | 42 | D | 100.00 | 54 | 39 | 77 | 86 | 60 | 76 | 61 | 73 | 25 | 60 | 49 | 51 | 89 | 52 | 57 | 16 | 50 | 62 | 33 | 950,000$/2yrs | |||
![]() | 44 | D | 100.00 | 45 | 32 | 87 | 55 | 42 | 67 | 68 | 75 | 25 | 61 | 63 | 55 | 91 | 66 | 88 | 72 | 50 | 61 | 22 | 700,000$/1yrs | |||
Scratches | ||||||||||||||||||||||||||
![]() | 89 | RW | 100.00 | 77 | 50 | 83 | 90 | 59 | 74 | 88 | 83 | 58 | 69 | 46 | 77 | 89 | 76 | 82 | 1 | 50 | 73 | 36 | 1,200,000$/1yrs | |||
![]() | 0 | RW | 100.00 | 64 | 45 | 67 | 87 | 99 | 71 | 89 | 92 | 46 | 53 | 64 | 52 | 53 | 62 | 84 | 68 | 50 | 72 | 21 | 900,000$/3yrs | |||
![]() | 22 | C | 100.00 | 52 | 31 | 86 | 71 | 82 | 46 | 59 | 81 | 72 | 34 | 56 | 87 | 86 | 85 | 46 | 65 | 50 | 64 | 22 | 750,000$/3yrs | |||
![]() | 0 | C | 100.00 | 46 | 46 | 55 | 67 | 60 | 70 | 75 | 72 | 64 | 59 | 62 | 55 | 50 | 55 | 75 | 67 | 50 | 63 | 22 | 844,507$/3yrs | |||
![]() | 56 | RW | 100.00 | 41 | 60 | 59 | 76 | 27 | 59 | 85 | 65 | 50 | 46 | 76 | 87 | 81 | 78 | 35 | 74 | 50 | 62 | 22 | 700,000$/1yrs | |||
![]() | 45 | LW | 100.00 | 43 | 52 | 77 | 71 | 61 | 59 | 51 | 90 | 89 | 32 | 63 | 56 | 43 | 95 | 92 | 72 | 50 | 60 | 22 | 750,000$/3yrs | |||
![]() | 19 | D | 100.00 | 75 | 51 | 72 | 68 | 90 | 86 | 50 | 99 | 25 | 57 | 66 | 73 | 42 | 63 | 44 | 34 | 50 | 72 | 29 | 1,399,500$/2yrs | |||
![]() | 66 | D | 100.00 | 96 | 40 | 82 | 72 | 59 | 62 | 57 | 92 | 25 | 63 | 61 | 73 | 63 | 59 | 97 | 65 | 50 | 69 | 22 | 700,000$/1yrs |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Goalie | # | CON | SK | DU | EN | SZ | AG | RB | SC | HS | RT | PH | PS | EX | LD | PO | MO | OV | AGE | CONTRACT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 0 | 100.00 | 58 | 72 | 72 | 68 | 88 | 55 | 58 | 86 | 90 | 73 | 53 | 76 | 96 | 9 | 50 | 72 | 33 | 1,400,000$/1yrs |
Scratches | ||||||||||||||||||||
![]() | 0 | 100.00 | 76 | 69 | 77 | 77 | 64 | 66 | 75 | 72 | 89 | 70 | 71 | 84 | 76 | 54 | 50 | 74 | 18 | 900,000$/3yrs |
![]() | 30 | 100.00 | 54 | 54 | 68 | 79 | 55 | 87 | 60 | 64 | 83 | 76 | 72 | 96 | 36 | 38 | 50 | 68 | 27 | 827,479$/4yrs |
Coaches Name | PH | DF | OF | PD | EX | LD | PO | CNT | Age | Contract | Salary |
---|
General Manager | Kieran Green |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Player Name | Team Name | POS | GP | G | A | P | +/- | PIM | PIM5 | HIT | SHT | OSB | OSM | SHT% | SB | MPG | PPG | PPA | PPP | PKG | PKA | PKP | PKM | GW | GT | FO% | EG | HT | P/GP | PSG | PSS | GSAVG |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Goalie Name | Team Name | GP | W | L | OTL | PCT | GAA | MP | PIM | SO | GA | SA | SAR | A | EG | PS % | PSA | ST | BG | S1 | S2 | S3 |
---|
Player Name | POS | Age | Cap Hit | 5-6 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
Adalbert Berlin ![]() | C | 30 | 1,100,000$ | 1,100,000$ | 1,100,000$ | ||||||
Adel Ferrantino ![]() | C | 22 | 844,507$ | 844,507$ | 844,507$ | 844,507$ | |||||
Akke Pyoriainen ![]() | D | 33 | 950,000$ | 950,000$ | 950,000$ | ||||||
Artsyom Marakow ![]() | RW | 21 | 900,000$ | 900,000$ | 900,000$ | 900,000$ | |||||
Ben Moes ![]() | D | 29 | 1,399,500$ | 1,399,500$ | 1,399,500$ | ||||||
Bohdan Palamarchuk ![]() | D | 24 | 700,000$ | 700,000$ | |||||||
Branislav Herceg ![]() | G | 18 | 900,000$ | 900,000$ | 900,000$ | 900,000$ | |||||
Connie Leather ![]() | D | 22 | 700,000$ | 700,000$ | |||||||
Dane Wooten ![]() | LW | 23 | 1,999,999$ | 1,999,999$ | 1,999,999$ | 1,999,999$ | |||||
Deimantas Dainys ![]() | LW | 29 | 1,330,000$ | 1,330,000$ | |||||||
Easton Jamieson ![]() | C | 26 | 1,200,000$ | 1,200,000$ | 1,200,000$ | ||||||
Emilio Mabry ![]() | RW | 23 | 1,900,999$ | 1,900,999$ | 1,900,999$ | 1,900,999$ | |||||
Finlay Hellgren ![]() | C | 22 | 750,000$ | 750,000$ | 750,000$ | 750,000$ | |||||
Francois Walrod ![]() | LW | 24 | 1,500,000$ | 1,500,000$ | |||||||
Gennady Oginsky ![]() | RW | 36 | 1,200,000$ | 1,200,000$ | |||||||
Graeme Bourdeau ![]() | G | 27 | 827,479$ | 827,479$ | 827,479$ | 827,479$ | 827,479$ | ||||
Jens Liljegren ![]() | D | 23 | 1,900,000$ | 1,900,000$ | 1,900,000$ | 1,900,000$ | |||||
Linus Smeds ![]() | G | 33 | 1,400,000$ | 1,400,000$ | |||||||
Maitland Cable ![]() | C | 36 | 835,000$ | 835,000$ | 835,000$ | ||||||
Norman Krichew ![]() | D | 22 | 800,000$ | 800,000$ | |||||||
Oskar Carlsson ![]() | C | 26 | 1,600,000$ | 1,600,000$ | 1,600,000$ | ||||||
Rylan Meunier ![]() | LW | 25 | 1,000,000$ | 1,000,000$ | 1,000,000$ | ||||||
Siegfried Klatt ![]() | D | 21 | 800,000$ | 800,000$ | |||||||
Tavish Duhatschek ![]() | LW | 33 | 700,000$ | 700,000$ | |||||||
Tony Delaurentis ![]() | RW | 22 | 700,000$ | 700,000$ | |||||||
Wyatt Bergheimer ![]() | LW | 22 | 750,000$ | 750,000$ | 750,000$ | 750,000$ | |||||
Yevheniy Yakovenko ![]() | D | 22 | 700,000$ | 700,000$ |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | VS Team | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | P | PCT | G | A | TP | SO | EG | GP1 | GP2 | GP3 | GP4 | SHF | SH1 | SP2 | SP3 | SP4 | SHA | SHB | Pim | Hit | PPA | PPG | PP% | PKA | PK GA | PK% | PK GF | W OF FO | T OF FO | OF FO% | W DF FO | T DF FO | DF FO% | W NT FO | T NT FO | NT FO% | PZ DF | PZ OF | PZ NT | PC DF | PC OF | PC NT | GF% | SH% | SV% | PDO | PDOBRK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0 | 0.0% | 0.0% | 0.0% | 0.0 | Unlucky |
Puck Time | |
---|---|
Offensive Zone | 0 |
Neutral Zone | 0 |
Defensive Zone | 0 |
Puck Time | |
---|---|
Offensive Zone Start | 0 |
Neutral Zone Start | 0 |
Defensive Zone Start | 0 |
Puck Time | |
---|---|
With Puck | 0 |
Without Puck | 0 |
Faceoffs | |
---|---|
Faceoffs Won | 0 |
Faceoffs Lost | 0 |
Team Average Shots after | League Average Shots after | |
---|---|---|
1st Period | 0.0 | 9.57 |
2nd Period | 0.0 | 20.31 |
3rd Period | 0.0 | 30.68 |
Overtime | 0.0 | 31.4 |
Goals in | Team Average Goals after | League Average Goals after |
---|---|---|
1st Period | 0.0 | 0.64 |
2nd Period | 0.0 | 1.65 |
3rd Period | 0.0 | 2.67 |
Overtime | 0.0 | 2.83 |
Even Strenght Goal | 0 |
---|---|
PP Goal | 0 |
PK Goal | 0 |
Empty Net Goal | 0 |
Home | Away | |
---|---|---|
Win | 0 | 0 |
Lost | 0 | 0 |
Overtime Lost | 0 | 0 |
PP Attempt | 0 |
---|---|
PP Goal | 0 |
PK Attempt | 0 |
PK Goal Against | 0 |
Home | |
---|---|
Shots For | 0.0 |
Shots Against | 0.0 |
Goals For | 0.0 |
Goals Against | 0.0 |
Hits | 0.0 |
Shots Blocked | 0.0 |
Pim | 0.0 |
Salary Cap | |||
---|---|---|---|
Players Total Salaries | Retained Salary | Total Cap Hit | Estimated Cap Space |
2,938,749$ | 0$ | 0$ | 75,000,000$ |
Arena | About us | |
---|---|---|
![]() | Name | |
City | Kansas City | |
Capacity | 3000 | |
Season Ticket Holders | 10% |
Arena Capacity - Ticket Price Attendance - % | |||||
---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Arena Capacity | 2000 | 1000 | |||
Ticket Price | 40$ | 15$ | $ | $ | $ |
Attendance | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Attendance PCT | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Income | |||||
---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Home Games Left | Average Attendance - % | Average Income per Game | Year to Date Revenue | Arena Capacity | Team Popularity |
40 | 0 - 0.00% | 0$ | 0$ | 3000 | 100 |
Expenses | |||
---|---|---|---|
Players Total Salaries | Players Total Average Salaries | Coaches Salaries | Special Salary Cap Value |
2,938,749$ | 2,938,749$ | 0$ | 0$ |
Year To Date Expenses | Salary Cap Per Days | Salary Cap To Date | Luxury Taxe Total |
---|---|---|---|
0$ | 0$ | 0$ | 0$ |
Estimate | |||
---|---|---|---|
Estimated Season Revenue | Remaining Season Days | Expenses Per Days | Estimated Season Expenses |
0$ | 0 | 0$ | 0$ |
Team Total Estimate | |||
---|---|---|---|
Estimated Season Expenses | Estimated Season Salary Cap | Current Bank Account | Projected Bank Account |
0$ | 0$ | 0$ | 0$ |
Sponsors | |||
---|---|---|---|
TV Rights | Primary Sponsor | Secondary Sponsor | Secondary Sponsor |
Left Wing | Center | Right Wing |
---|---|---|
|
|
|
Defense #1 | Defense #2 | Goalie |
---|---|---|
|
|
|